Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Liang Zhang, ${ }^{\text {a }}$ Su-Wen Chen, ${ }^{\text {a }}$ Wei-Sheng Liu ${ }^{\text {a }}$ and Da-Qi Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, People's Republic of China

Correspondence e-mail:
yuliangzhang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.049$
$w R$ factor $=0.123$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis(μ-2-bromobenzoato- $\kappa^{2} O, O^{\prime}$)bis[(N, N^{\prime}-dimethylformamide)copper(II)], a new binuclear complex containing a metal-metal bond

The dimeric neutral title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\right)_{4^{-}}\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$, is centrosymmetric and contains a $\mathrm{Cu}-\mathrm{Cu}$ bond [2.636 (3) A].

Comment

It is well known that copper(II) complexes of inactive ligands and active anti-inflammatory drugs are more active than the ligands themselves (Sorenson, 1982), and the most widely used anti-inflammatory drugs are carboxylic acids in which the carboxylate group is available for metal-ligand interaction.

Recently, the binuclear copper(II) carboxylate compounds $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4} L_{2}\right]$ [$R=$ alkyl or phenyl; $L=\mathrm{H}_{2} \mathrm{O}$, DMF, DMSO, pyridine, picoline, diethylamine] were studied (Weder et al., 1999). In the present study, we have isolated the new dimeric complex tetrakis $\left(\mu\right.$-2-bromobenzoato- $\left.\kappa^{2} O, O^{\prime}\right) \operatorname{bis}\left[\left(N, N^{\prime}\right.\right.$-dimethylformamide)copper(II)], (I) (Fig. 1).

Compound (I) is a centrosymmetric neutral binuclear copper(II) compound with a $\mathrm{Cu}-\mathrm{Cu}^{\mathrm{i}}$ [symmetry code: (i) $1-x,-y,-z]$ separation of $2.636(3) \mathrm{A}$. This distance is similar to that found in related Cu -carboxylate dimers (Abuhijhleh, 1994). Each $\mathrm{Cu}^{\mathrm{II}}$ atom in the complex has a

Figure 1
View of the dimeric structure of (I) (50\% displacement ellipsoids). H atoms have been omitted for clarity. The symmetry code is as in Table 1.

Received 1 December 2003
Accepted 8 January 2004
Online 17 January 2004

Jahn-Teller-distorted octahedral geometry, with four O atoms from four 2-bromobenzoate groups in the basal plane and one O atom from one dimethylformamide molecule in the axial position. The trans angles in the basal plane deviate slightly from 180°, and the four $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles for O 5 and the four O atoms in the basal plane are slightly larger than 90° [average $\left.96.0(2)^{\circ}\right]$, indicating that the coordination geometry around the Cu 1 atom in the complex is slightly distorted. The average $\mathrm{Cu}-\mathrm{O}$ bond length $[1.966(4) \AA$] in the basal plane is comparable to equivalent bond lengths found in similar complexes.

Experimental

Cupric nitrate was added to sodium 2-bromobenzoate obtained by the reaction of the protonated ligand with sodium hydroxide (wt 10%) in water. The blue residues were collected and dissolved in DMF. Crystals of (I) were isolated by evaporation of the DMF in a vacuum. Spectroscopic analysis, $\operatorname{IR}\left(\mathrm{KBr}, \nu \mathrm{cm}^{-1}\right)$: 1663, 1616, 1564, 1473, 1409; analysis calculated for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Br}_{4} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}$: C $38.16, \mathrm{H}$ 2.83, N $2.62, \mathrm{Cu} 11.88 \%$; found: $\mathrm{C} 38.30, \mathrm{H} 2.61, \mathrm{~N} 2.75, \mathrm{Cu} 11.57 \%$.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\right)_{4}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=1073.32$
Monoclinic, $P 2_{1} / n$
$a=10.278$ (12) A
$b=10.885(13) \AA$
$c=17.55$ (2) A
$\beta=92.224(17)^{\circ}$
$V=1963(4) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.816 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1799 \\
& \quad \text { reflections } \\
& \theta=2.2-20.6^{\circ} \\
& \mu=5.21 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, blue } \\
& 0.37 \times 0.33 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.161, T_{\text {max }}=0.391$
9841 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.123$
$S=0.86$
3407 reflections
235 parameters

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.636(3)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$1.968(4)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.968(4)$	$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.980(5)$
$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.968(4)$	$\mathrm{Cu} 1-\mathrm{O} 5$	$2.134(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$167.89(18)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$84.88(13)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$89.88(19)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$83.03(13)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$88.47(19)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$87.87(15)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$97.60(19)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$80.29(14)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3$	$90.37(18)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$174.05(14)$
$\mathrm{O} 2^{i}-\mathrm{Cu} 1-4^{\mathrm{i}}$	$88.81(19)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	$121.7(4)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 5$	$94.37(18)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cu} 1^{\mathrm{i}}$	$124.3(4)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$168.14(17)$	$\mathrm{C} 8-\mathrm{O} 3-\mathrm{Cu} 1$	$118.2(4)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 5$	$97.5(2)$	$\mathrm{C} 8-\mathrm{O} 4-\mathrm{Cu} 1^{\mathrm{i}}$	$126.9(4)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 5$	$94.34(19)$		

Symmetry code: (i) $1-x,-y,-z$.
All the H atoms were placed geometrically and refined as riding $\left(\mathrm{C}-\mathrm{H}=0.93\right.$ or $0.93 \AA ; U_{\text {iso }}=1.2$ or $1.5 U_{\text {eq }}$ of the parent atom).

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors are grateful for the support of the National Nature and Science Foundation of China (grant No. 20071015) and the Key Project of the Ministry of Education of China (grant No. 01170).

References

Abuhijhleh, A. L. (1994). J. Inorg. Chem. 55, 255-262.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sorenson, J. R. J. (1982). Metal Ions in Biological Systems, Vol. 14, edited by H. Sigel, pp. 77-124. New York: Marcel Dekker.
Weder, J. E., Hambley, T. W., Kennedy, B. J., Lay, P. A., Maclachlan, D., Bramley, R., Delfs, C. D., Marray, K. S., Moubaraki, B., Warwick, B., Biffiu, J. R. \& Regtop, A. L. (1999). Inorg. Chem. 38, 1736-1744.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

